
Deployment of Micro services with K8s and Azure

Kubernetes Services (AKS)

1. Problem Statement
Modern software is increasingly run as fleets of containers, sometimes called Micro

services. A complete application may comprise many containers, all needing to work

together in specific ways.

Solution required to automate operational tasks of container management and includes

built-in commands for deploying applications, rolling out changes to your applications,

scaling your applications up and down to fit changing needs, and more — making it easier

to manage applications.

In a production environment, need to manage the containers that run the applications

and ensure that there is no downtime. For example, if a container goes down, another

container needs to start.

Solution Objectives

 Automate and scale application/microservices up and down based on the need.

 Deploy changes on production environment with zero downtime.

 Easy to manage, monitor and maintain the containerized application/microservices.

2. Solution / Architecture
Kubernetes (K8s) provides you with a framework to run containerised applications

resiliently. It takes care of scaling and failover for your application provides deployment

patterns, and more.

A Kubernetes cluster consists of a set of worker machines called compute

machines/nodes, which run containerized applications. The node(s) host the Pods that

are the components of the application workload. The control plane manages the worker

nodes and the Pods in the cluster.

https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/reference/glossary/?all=true#term-control-plane

 Architecture of Kubernetes (K8s) cluster

Although Kubernetes is open source, many companies planning to adopt Kubernetes do

not have the expertise or resources to set up and maintain the cluster themselves.

Managed Kubernetes providers help those who looking to use Kubernetes, by providing

them with the necessary support and maintenance of the Kubernetes clusters. A

managed Kubernetes deployment should provide users with a hassle-free control plane,

easy deployment options, and on-going Kubernetes maintenance, enabling users to

focus on their business and bringing their apps to market. Various vendors (Microsoft/

Google/AWS) offers Kubernetes-based platform that deploy Kubernetes. Here we will

check Azure Kubernetes Service (AKS) provided by Microsoft in detail.

Since this is managed service, there is cost associated with the same. Some basics to

understand managed Kubernetes price in Azure (Azure Kubernetes Service). With help of

below mentioned table we can easily understand what is chargeable in AKS cluster.

 Free Charged Optional

Kubernetes Control Plane

Billing Support

Basic Load Balancer

Node-Virtual Machines

Nodes – Disks

Bandwidth

Storage for persistent
volumes

Standard Load Balancer

Public IP Addresses

Log Analytics Workspace

Let’s see our solution for Micro services deployment with help of Managed Kubernetes

i.e. Azure Kubernetes Service (AKS). Here we will develop and deploy .Net micro service

in Azure Kubernetes service (AKS) and access it from internet. [More focus is to explain

K8s]. Below mentioned is the design of the proposed solution using AKS.

 Solution Architecture of K8sDemo Application

Solution Components Description

Visual Studio community
edition

K8sDemo micro service developed in .Net core.
With Docker Support.

GitHub Source code repository for the code

Azure Container Registry
Private registry service for building, storing, and managing container
images.

Azure Kubernetes Service
(AKS)

Azure Kubernetes Service (AKS) is a managed Kubernetes service
with hardened security and fast delivery

3. Technical Details and Implementation of solution

Prerequisites:

o Visual Studio community edition

o Docker desktop

o Git on local machine to work with Github code

o Azure subscription to create Azure resources.

o Expectation to have basic understanding of Microservices /Docker /Containers

/Azure

o Basic understanding of Powershell/.Net/Git

Solution implementation objectives:

- Develop micro service with help of .Net core

- Deployment Azure resources using available subscription

- Build Image and Push it in to Azure contained registry

- Create the YAML configuration file.

- Deploy Microservice in AKS cluster using YAML config and kubectl command.

- Scale up and down Microservice based on the requirement.

- Zero downtime deployment of Microservice in production environment.

- Release Azure resource after completion of the tests.

Note: After execution of the commands, we will see results in Azure portal. Though we can see it using console as

well, I preferred to explain it with help of user interface in Azure for easy understanding. Best practice is to check it

with commands to save time

Step by step implementation of the solution.

 Step 1: Develop micro service with help of .Net core

Create simple .Net core web application with Docker support, which will display

simple web page. In our example we will call it as Microservice.

 Ready code available here Download

Or use git clone with link - https://github.com/akslearning99/k8sDemo.git

Once you download an application then open it in visual studio and execute it.

You can see below mentioned Welcome screen as result. It is simple demo app.

https://github.com/akslearning99/k8sDemo.git
https://github.com/akslearning99/k8sDemo.git

 Step 2: Build and Create image of an application

Note: Please make sure that you have Docker desktop is installed on your machine.

To create image of an application. Right click on DockerFile in k8s.client project and

click on “Build Docker Image”. Image will get created on your local machine.

Check image in Docker Desktop application.

Alternative option is to create publish profile and push our image in Azure container

registry as well.

 Step 3: Login to Azure using command line (Power shell)

Please note, in this step we have to create resources in Azure cloud. Need valid

subscription and login details to proceed further. [You can use Azure free

subscription]

In visual studio open powershell terminal (View -> Terminal) and do login in Azure.

Use command “AZ Login”.

 Step 4: Deploy and validate Azure resources

As described in solution architecture we need below mentioned public cloud

resources in Azure to deploy Microservice in Kubernetes cluster.

Azure Container Registry
Private registry service for building, storing, and managing
container images.

Azure Kubernetes Service
(AKS)

Azure Kubernetes Service (AKS) is a managed Kubernetes service
with hardened security and fast delivery

Execute commands one by one to create Azure resources.

az group create --name azurek8sdemo --location EastUS2

az acr create --resource-group azurek8sdemo --name k8sdemoacr --sku Basic

az acr update -n k8sdemoacr --admin-enabled true

az aks create --resource-group azurek8sdemo --name k8sAKSCluster --node-count 1 --generate-

ssh-keys --attach-acr k8sdemoacr

List of resource created with help commands. It will take around 10-12 minutes to

create all resources.

Resource Type Resource Name

Resource Group azurek8sdemo

Azure Container registry k8sdemoacr

Azure Kubernetes Service (AKS) k8sAKSCluster

Let’s validate the resources in Azure portal. You can validate resources with help of

command line as well.

Resource group “azurek8sdemo” is created in EastUS2 region with two resources in it.

Azure container registry is created, in the resource group. This will be used to store

the images. [Private container registry]

As mentioned in command “Admin user” is enabled for ACR. You can see Username

and Password. Plan is to use these credentials in upcoming steps.

Azure Kubernetes service also called as AKS cluster is created (“k8sAKSCluster”).

Workload blade will show details about the application we deployed. By default there

are few services which help to manage and maintain the cluster.

Workloads -> Pods section have detailed about the number of PODS deployed.

After deployment of our application, we can see added entries in POD’s and services

section.

 Step 5: Tag to local image and push in Azure container registry

Local image was created in Step2, let’s push it in Azure container registry (Private

registry) and maintain versions. Images stores in container registry can be used at the

time of container creations in AKS cluster. We can manage versioning of the

deployments we are doing using ACR.

-- Tag local image with specific version.

docker tag k8sclient:latest k8sdemoacr.azurecr.io/k8sclient:v1

-- Login to Azure container registry...

az acr login --name k8sdemoacr

-- Push tagged image in Azure container registry...

docker push k8sdemoacr.azurecr.io/k8sclient:v1

Push command result is as below.

Validate image pushed in Azure Container registry [k8sdemoacr]. As we can see in

screenshot below, image k8sclient:v1 is available in ACR repositories.

 Step 6: Create YAML file for POD deployment in Azure Kubernetes service

Deployment of the container in is based on YAML config file. This is basically used for

automated deployments.

Let’s check k8sclient.yaml file in detail. You can find this file in downloaded source

code as well.

apiVersion: apps/v1

kind: Deployment

metadata:

 name: k8sclient-deployment

 labels:

 app: k8sclient

spec:

 replicas: 1

 selector:

 matchLabels:

 app: k8sclient

 template:

 metadata:

 labels:

 app: k8sclient

 spec:

 containers:

 - name: k8sclient

 image: k8sdemoacr.azurecr.io/k8sclient:v1

 ports:

 - containerPort: 80

 env:

 - name: ASPNETCORE_ENVIRONMENT

 value: Development

 resources:

 requests:

 memory: "64Mi"

 cpu: "0.1"

 limits:

 memory: "128Mi"

 cpu: "0.3"

 imagePullSecrets:

 - name: acr-secret

apiVersion: v1

kind: Service

metadata:

 name: k8sclient-service

spec:

 type: LoadBalancer

 selector:

 app: k8sclient

 ports:

 - protocol: TCP

 port: 80

This file has detailed information about what is configuration we need in order to

execute application in container. E.g. Image Name, CPU and RAM, replicas etc.

Application name details

metadata:

 name: k8sclient-deployment

 labels:

 app: k8sclient

Number of instances of this container/POD required is mentioned in setting Replicas.

Current it is configured as 1.

spec:

 replicas: 1

For containers need to specify image, it’s version and port details from where specific

application/service can be accessed. In our case,

Image: k8sclient:v1 image from Azure container registry (k8sdemoacr).

Container is available on port number 80.

containers:

 - name: k8sclient

 image: k8sdemoacr.azurecr.io/k8sclient:v1

 ports:

 - containerPort: 80

In resources section of container configured CPU and Memory required executing the

container/POD. Also configured the MAX limit for resource utilization. It will help us

to manage the resources in the cluster.

resources:

 requests:

 memory: "64Mi"

 cpu: "0.1"

 limits:

 memory: "128Mi"

 cpu: "0.3"

e.g. If you have node in cluster with 4 core CPU and 8gb RAM. We have container/pod

which will need 1 core CPU and 2gb RAM for execution. How many pods we can

create?

In this case we created 3 containers/pods. In case we try to create another

container/pod we might face insufficient CPU/memory issue. Because to create new

container/pod we need minimum 1 core CPU and 2 GB RAM. If we do this then100%

utilization of the node and in AKS cluster in order to manage cluster activities from

every node some CPU and Memory is utilised.

We can define max limit as well. Single POD can use MAX 2CPU and 3 GB RAM etc. So

Microsoft managed AKS will take care of creation of PODs based on configuration and

available resources in the nodepool. If resource are available, it will create the

container/pod otherwise it will not create because of insufficient resources.

Image is in Private registry. To pull image during deployment in cluster AKS need

credentials to access to private registry. We need imagePullSecrets configuration. It

allows AKS to pull the image from Azure container registry.

imagePullSecrets:

 - name: acr-secret

How to create image pull secret? In step 4 you can find ACR password. Use the same

in below mentioned commands and create the secret.

-- Login to Azure container registry...

az acr login --name k8sdemoacr

-- Image pull secret...

kubectl create secret docker-registry acr-secret --docker-server=k8sdemoacr.azurecr.io --

docker-username=k8sdemoacr --docker-password=<<Password from ACR>> --docker-email=<<Your Azure

login>>

Last but not the least, how we are accessing an application deployed in AKS. Service

endpoint is very important.

apiVersion: v1

kind: Service

metadata:

 name: k8sclient-service

spec:

 type: LoadBalancer

 selector:

 app: k8sclient

 ports:

 - protocol: TCP

 port: 80

There are two types: NodePort and LoadBalancer

Load Balancer type allows us to access the PODS from public network. It will help to

share traffic load with multiple containers/pods.

If we add or remove any container/POD the load balancer will take care of traffic

across the containers and using public IP address of the load balancer we can access

the application/microservice deployed.

 Step 7: Deploy YAML file in AKS using kubectl commands and validate in Azure portal

Note: Please make sure you have kubectl installed to execute commands. You can find installation

steps here.

K8sclient.yaml file ready for the deployment of containers/pods. Connect to AKS

cluster (k8sAKSCluster) we created in Azure [Refer Step 4].

-- Connect to AKS cluster...

az aks get-credentials --resource-group azurek8sdemo --name k8sAKSCluster

Select the location of k8sclient.yaml file and execute kubectl apply command.

-- deploy services...

kubectl apply -f .\k8sclient.yaml

We are done. Containers are deployed in AKS cluster.

https://kubernetes.io/docs/tasks/tools/#kubectl

We can check PODS/Containers etc. using command line kubectl commands (Reference

Kubectl commands) as well. In our case we will check it in Azure portal.

Let’s open k8sAKSCluster in Azure portal and see the newly created POD and service.

Based on k8sclient.yaml we can see one deployment in cluster. As we configured in

Yaml file we have only one instance.

Service type mentioned as load balancer so we can see external IP.

https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/

Using this public IP address let’s open our deployed containerized application in

Managed AKS.

Our application packaged in image “k8sclient:v1” is available online

 Step 8: Horizontal scaling of pods and nodes in AKS cluster

How to scale up application horizontally in case of business need?

Let’s see our current deployment. We deployed application with one POD in AKS

cluster. It is working well. It looks like below mentioned diagram.

If there is sudden increase in traffic and need multiple instances of deployed micro

service/application. What to do in this case? How to increase number of POD

instances?

We can achieve it with help of only change in configuration of “Replicas” in

k8sclient.yaml file.

Modify “Replicas: 3” in the k8sclient.yaml and Apply it again in AKS Cluster.

As we can see only deployment is configured again and service is as it is. So now two

new pods added in AKS cluster.

Traffic will get distributed amongst the 3 different running POD’s.

See the result of applied configuration in AKS cluster.

Kubernetes support horizontal POD autoscaling to adjust the number of pods in

deployment depending on CPU utilization or other metrics.

If number of POD’s increased and we not have enough space to execute the POD?

What to do in this case?

There is cluster-autoscaler setting available in Azure Kubernetes service. We have to

specify min and max count of nodes.

e.g.

-- Cluster Autoscaler setting...

az aks update --resource-group azurek8sdemo --name k8sAKSCluster --

update-cluster-autoscaler --min-count 1 --max-count 3

In this command we updated setting with minimum 1 and maximum 3 nodes. So in

scaling example if we updated “replicas = 5”. It means requirement of 5 pods.

In case we not have enough processing power. With help of autocluster setting new

node will be automatically created and new pods will get executed on the new node.

Similarly in case we reduced the pods then nodes as well get reduced automatically.

AKS will take care of the same.

We can create and manage group of nodes using nodepool.

 Step 9: Explanation of Zero downtime deployment of microservices

Application/Microservice is deployed in production AKS cluster. It is running in 3

different pods.

There is business situation now and we have code corrections and have to deploy it

again on production environment with zero downtime. How to deploy

Application/Microservices in production with Zero downtime?

Let’s correct the code and generate image.

Tag and push image again in azure container registry with version v2.

In Azure container registry, we can see two different version of the image.

Update the image version in k8sclient.yaml file.

Apply the changes using kubectl command.

This step will terminate pods one by one and start new pods with updated version in

.yaml file.

How it works? [Note: In actual sequence of POD termination might be different since it is managed by AKS]

POD Name App Version Comment

POD 1 v1 Prod running

POD 2 v1 Prod running

POD 3 v1 Prod running

Started new deployment of version 2

New POD1 v2 POD creation is in progress

New POD1 v2 POD created

POD 1 v1 POD terminated

New POD2 v2 POD creation is in progress

New POD2 v2 POD created

POD 2 v1 POD terminated

New POD3 v2 POD creation is in progress

New POD3 v2 POD created

POD 3 v1 POD terminated

After successful deployment of version 2

New POD1 v2 Prod running

New POD2 v2 Prod running

New POD3 v2 Prod running

For reference you can check the events.

Kubernetes will internally take care of all the deployments. In this way we can achieve

deployment with zero downtime on business critical environments.

Check newly deployed application using same external public IP address.

What we did so far is all manual execution of commands, we can do it with help of

CICD pipelines in order to automate the deployment. So when you change the source

code, image will get created automatically and application will get deployed in AKS

cluster.

 Step 10: Clean resources deployed in Azure environment

 Final Step . Clean up activity for the resources created for this demo application.

-- delete all resources

az group delete --name azurek8sdemo --yes --no-wait

4. Challenges in implementing the solution
Setup of Kubernetes manually is complex task and need experts. To be honest with help

of Managed Kubernetes i.e. Azure Kubernetes service (AKS) it is quite simple. However if

we are not aware about core concepts of Kubernetes sometime it is very difficult to do

the deployments. e.g. we do the deployments and pods are not running etc. We need to

use the logs and events information effectively and understand why specific pod was not

created. Sometime image not pulled from acr to akscluster because of rights or all well

with configuration but pod not created because of sufficient cpu and memory. Basically it

is learning experience from application as well as infrastructure point of view.

5. Business Benefits
The Solution Architecture design in this blog can further extend to deploy multiple

microservices in the AKS cluster. For every microservice we just have to create respective

YAML configuration file. Using CICD pipeline we can automate the manual process of

deployment. This will allow faster end to end deployments in production with zero

dowtime. With cluster and pod autoscaling we can use resources effectively. AKS protects

your business by enabling administrators to tailor access to Azure Active Directory (AD)

and identity and group identities.

6. References
Azure Kubernetes Service (AKS) documentation | Microsoft Learn

https://kubernetes.io/

https://en.wikipedia.org/wiki/Kubernetes

 Mr. SACHIN M. POWAR

 Cloud Solution Architect (#LinkedinProfile)

https://learn.microsoft.com/en-us/azure/aks/
https://kubernetes.io/
https://en.wikipedia.org/wiki/Kubernetes
https://www.linkedin.com/in/sachin-powar-490a10210/

